2012 National Equipment Fleet Management Conference

Advanced GHG Rule Vehicle Speed Limiter and Automatic Engine Shutdown Prorate Strategies & Advanced Technologies

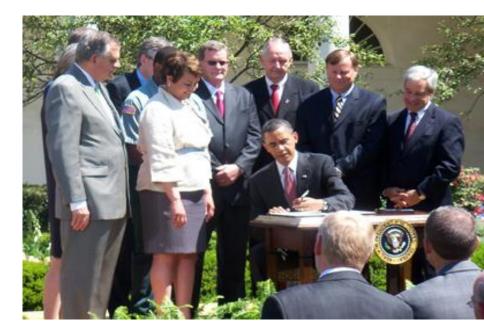
David McKenna

Director, Powertrain Sales

Fuel Efficiency & Green House Gas Regulation

 EPA and DOT/NHTSA have published final GHG and FE standards for heavy duty vehicles

-Mandatory from model year 2014

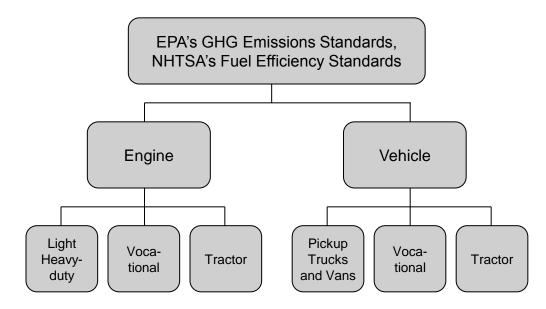

-New targets model year 2017

 Sold trucks must be equipped with EPA approved features (e.g. aerodynamic kit)

-"Innovative technologies" = Super Econodyne generates credits

Canada and Mexico likely to follow

 EPA promises a Phase 2 regulation in 2020 with an integrated vehicle approach that could be harmonized with EU



Fuel Efficiency & Green House Gas Regulation

EPA's GHG Emissions Standards, and NHTSA's Fuel Efficiency Standards

- Separate engine and vehicle standards
- NHTSA standard is aligned with EPA CO₂ standard
 - NHTSA don't cover other GHG emissions
- Three engines categories
 - Light Heavy-Duty
 - Vocational
 - Tractor
- Three types of heavy-duty vehicles
 - Heavy-duty Pickup Trucks and Vans
 - Vocational Vehicles, incl. buses
 - Combination Tractors
- Both standards allow early compliance from 2013
- Standards will be subject to future tightening (post 2020)

Pro-rated Speed Limiters Credit Generators

Allows for:

- Expiration
- Increased speed for passing
- Benefit is most sensitive to expiration mileage values

Effective speed = ExF*{STF*STSL+(1-STF)*DSL}+(1-ExF)*65 MPH

- ExF = expiration point miles/1,259,000 miles
- STF = max # of allowable soft top operation hours per day / 3.9 hours for day cabs
- STF = max # of allowable soft top operation hours per day / 7.3 hours for sleeper cabs
- STSL = the soft top speed limit
- DSL = default speed limit

Anti-idle Credit Generators

Prorated credit factors:

- Expiration
- Allowable idle time per year
- More sensitive to expiration mileage

Effective AES Input :

• = 5 g CO2/ton-mile × (miles at exp./ 1,259,000 miles) x

[1-(maximum allowable number of idling hours per year/1,800 hours)]

Fuel Consumption & GHG

Truck Tractors Class 7 and 8

- NHTSA fuel consumption standards

Fuel consumption standards MY 2016 (gallons/1000 ton miles)							
	Day cab		Sleeper cab				
	Class 7	Class 8	Class 8				
Low roof	10.5	8.0	6.7				
Mid roof	11.7	8.7	7.4				
High roof	12.2	9.0	7.3				
Fuel consumption standards MY 2017 and later (gallons/1000 ton miles)							
	Day cab		Sleeper cab				
	Class 7	Class 8	Class 8				
Low roof	10.2	7.8	6.5				
Mid roof	11.3	8.4	7.2				
High roof	11.8	8.7	7.1				

Fuel Consumption & GHG

Heavy-Duty Vocational Vehicle

- NHTSA fuel consumption standards

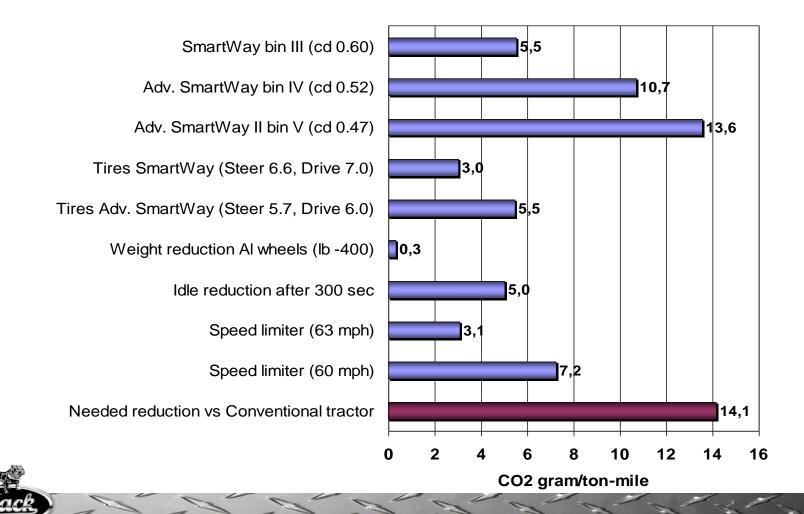
Fuel consumption standards MY 2016 (gallons/1000 ton miles)						
	Light Heavy Vehicles	Medium Heavy Vehicles	Heavy Heavy Vehicles			
	Class 2b-5	Class 6-7	Class 8			
Standard	38.1	23.0	22.2			
Fuel consumption standards MY 2017 and later (gallons/1000 ton miles)						
	Light Heavy Vehicles	Medium Heavy Vehicles	Heavy Heavy Vehicles			
Standard	36.7	22.1	21.8			

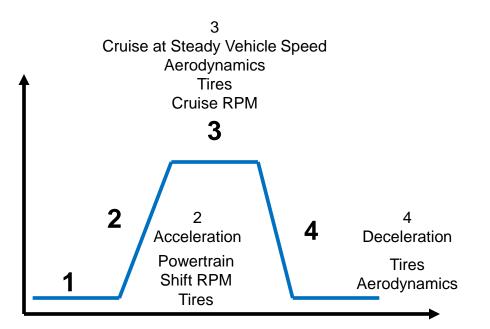
Source: Page 920

Fuel Efficiency

Class 2b-8 Vocational Vehicles

- Vehicle-based standard calculated via a vehicle simulation model (GEM)
- Only one input parameter
 - tire rolling resistance


CO ₂ (gram/ton-mile) standards for Vocational vehicles				
	MY 2014-2016	MY 2017-		
Light Heavy-Duty Class2b-5	388	373		
Medium Heavy-Duty Class 6-7	234	225		
Heavy Heavy-Duty Class 8	226	222		


Fuel Consumption Impactors

CO₂ reduction for different features

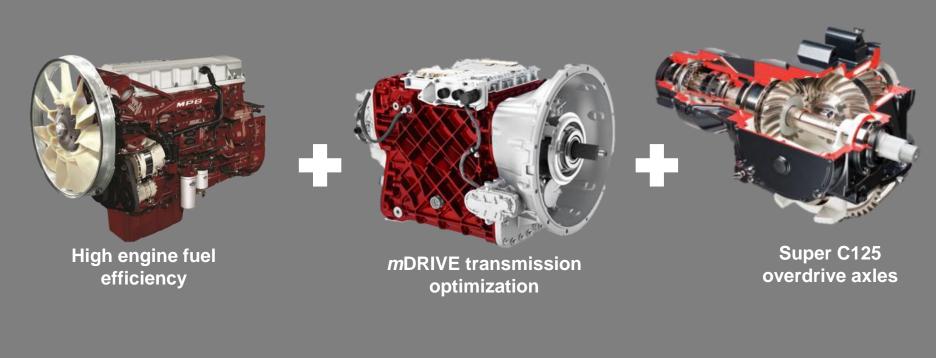
- Example: Class 8 high roof sleeper cab

Fuel Consumption Profile

1 Idle Truck Stationary

Idle Speeds Idle Shutdowns PTO Settings

Innovative Technologies are Required

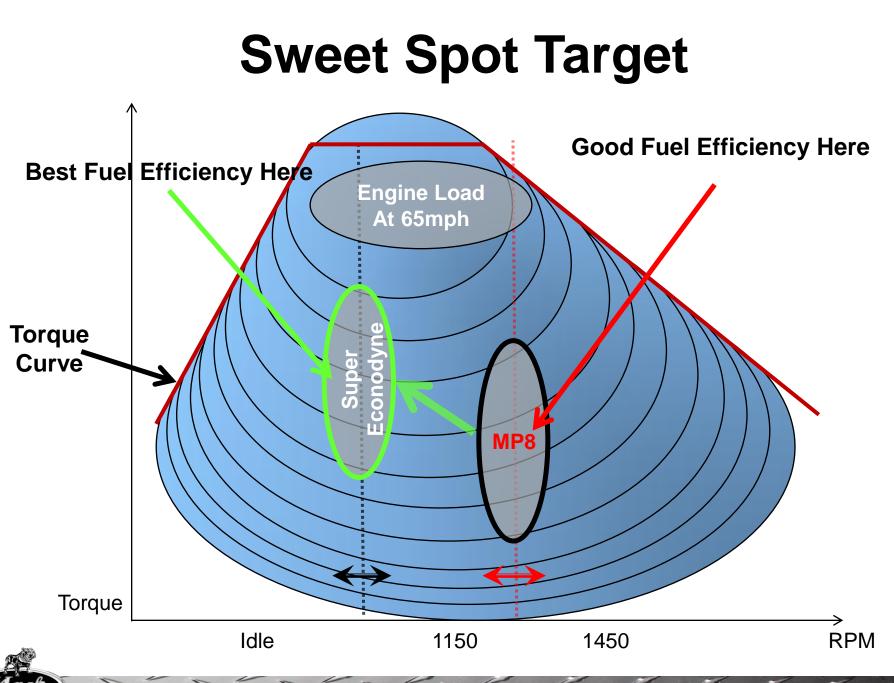

• Duty Cycles

MACK

What uses Fuel When

ECONODYNE = Total Integration

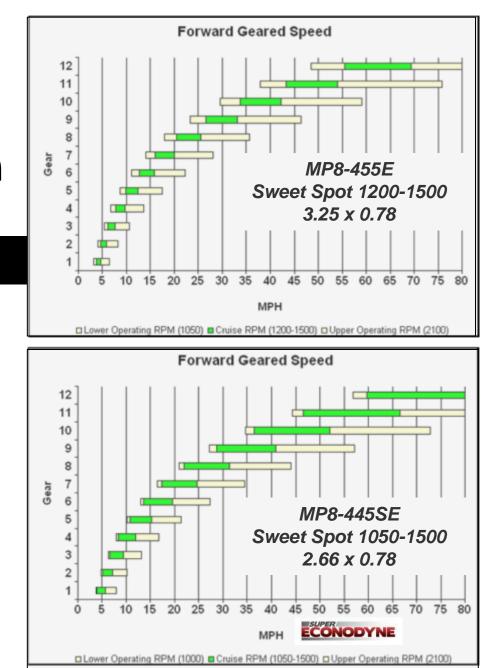
Result: Complete system optimization, including hardware and software


ECONODYNE: What Is It?

- Complete vehicle system evolution, providing exceptional fuel efficiency while maintaining excellent performance and drivability
- Evolution on all the Powertrain and vehicle components MP8-445SE, *m*DRIVE, C125 axles and software

- What IS It?
 The SE package is designed to "down speed" the engine speed by
 - approximately 200 rpm at highway speeds
 - This reduces CO₂ and increases highway fuel economy about 2% over today's vehicle performance
 - At 65 mph, the engine will cruise at 1160 rpm (instead of 1380 rpm)

CoPilot Readout Screen

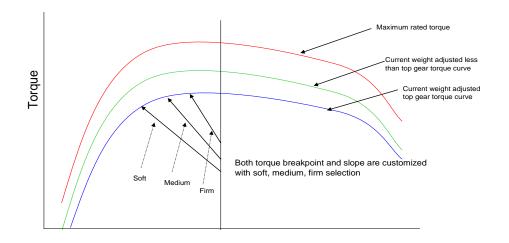

Mack Lehigh Valley, Press Event June 20, 2012

ECONODYNE

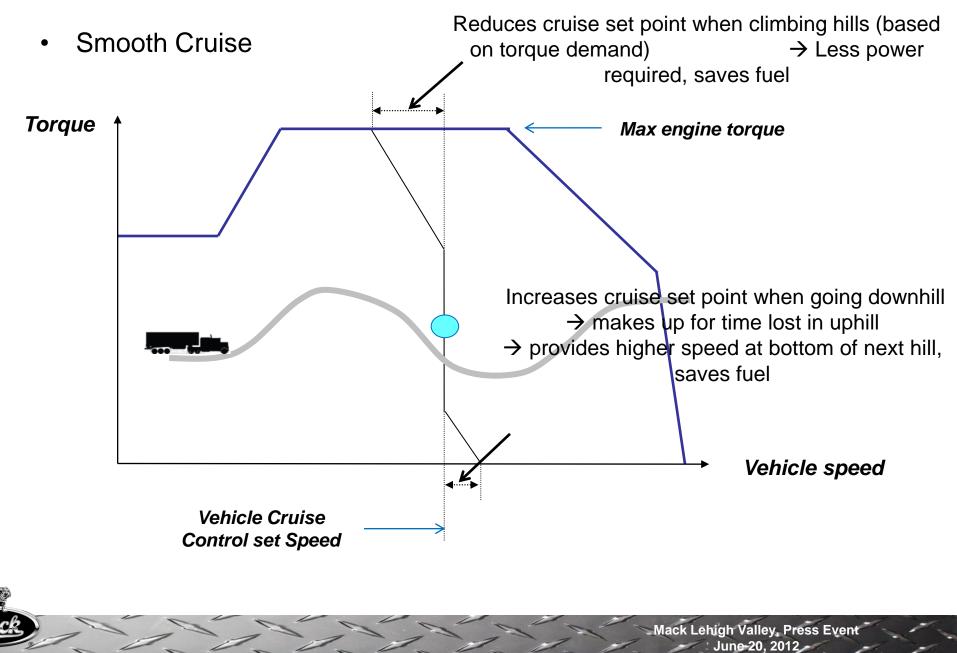
Sweet Spot Optimization

MP8-445SE Package

- Much broader "sweet spot" of engine operation than typical Mack Econodyne engine
- Allows engine to operate at maximum efficiency, even at road speeds higher than 65 mph



Mack Lehigh Valley, Press Event June 20, 2012


Fuel Efficiency

LoadSense Variable Torque

- Adjusts the usable engine torque to suit the vehicle's overall weight
- Time to speed is the same empty or loaded
- Maximum engine power is always available on GCW's of 74,000 lbs. or higher
- mDRIVE and Manuals

Fuel Efficiency

Fuel Consumption Top 10 Impactors

Top 10 Controllable Fuel Economy Factors

RANK		IF YOU USE OR HAVE:	INSTEAD OF:	MPG IMPROVES BY:
1	DRIVERS	Best Drivers	Worst Drivers	Up to 35%
2	SPEED With Poor Aerodynamics	If you go slower by: 5 MPH	No Change	10 - 15%
3	TIRES S Deep Lug → Rib	STEER / DRIVE / TRAILER Rib / Rib / Shallow Rib	STEER / DRIVE / TRAILER Rib / Deep Lug / Rib	6 - 14%
4	IDLING With A/C on @ 1000 RPM	Zero Idle Time	50%	7 - 10%
5	TRAILERS	Single Van	Double Van	6 - 10%
6	AERODYNAMICS With Cab Roof Devices	Full Roof Fairing	Nothing	Up to 1 5%
7		Full Roof Fairing	Raised Roof Sleeper	4 - 10%
8	SPEED With Excellent Aerodynam	If you go slower by: nics 5 MPH	No Change	5 - 8%
9	TIRES S Lug > Rib	STEER / DRIVE / TRAILER Rib / Rib / Shallow Rib	STEER / DRIVE / TRAILER Rib / Lug / Standard Rib	4 - 9%
10	ENGINES	Cruise Control	No Cruise Control	Up to 6%

